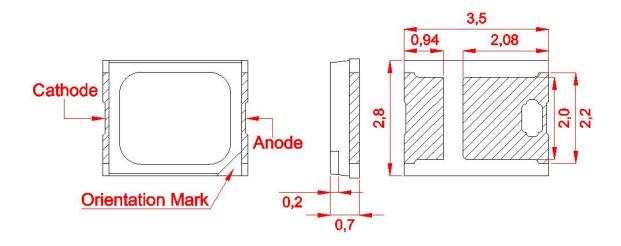
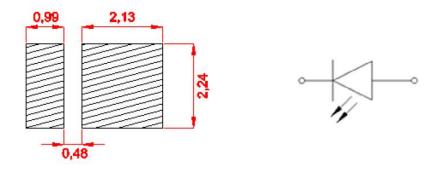


Power Light Source

Introduction:

TMSB-BFI is one the highest flux LEDs in the world. Due to the special design of chip and package, the TMSB-BFI is designed by particular package for high power LED.


Feature:


- Long operating life
- Energy efficiency
- Low thermal resistance
- Compact design
- Instant light
- Fully dimmable
- No UV
- Superior ESD protection
- ROHS compatibility

Typical Applications:

- Reading lights
- Portable light
- Orientation
- Entertainment
- Garden
- Security light
- Ceiling light
- Architectural lighting
- General lighting
- Jewel display illumination

Recommended Solder Pad

Circuit Diagram

Notes:

- 1. Drawings are not to scale.
- 2. All dimensions are in millimeter.
- 3. General tolerance is ± 0.2 mm.
- 4. The polarity of slug at bottom is anode.
- 5. It is important that the slug can't contact aluminum surface, it is strongly recommended that there should coat a uniform electrically isolated heat dissipation film on the surface.
- 6. It is strongly recommended that the temperature of lead be not higher than 70°C.

Absolute Maximum Ratings

Parameter		Conditions	
DC Forward Current	Crimson	150mA	
DC Forward Current	IR	150mA	
Deal Dules Comment (se A)	Crimson	250mA	
Peak Pulse Current (mA)	IR	250mA	
LED Junction Temperature (°C)		120°C	
Operating Temperature (°C)		-30~100	
Storage Temperature (°C)		-40~120	
Soldering Temperature		Manual 240°C(max) 5 seconds	
Payarsa Valtaga		Not design to be driven in reverse hiss	

Reverse Voltage

Not design to be driven in reverse bias

Notes:

- 1. Proper current derating must be observed to maintain junction temperature below the maximum at all time.
- 2. Allowable reflow cycles are 3 times for each LED

Optical Characteristics (Tj=25°C)

Color	Peak Wa	velength λp	Viewing Angle Degree
	Min.	Max.	20 _{1/2}
Crimson	650nm	670nm	120
	720nm	740nm	120
IR -	835nm	870nm	120
	935nm	955nm	120

Notes:

- 1. CCT (Wavelength) ±5% tester tolerance.
- 2. Wavelength is measured with an accuracy of ± 0.5 nm.

Flux Characteristics (Tj=25°C)

				Minimum	Typical	Maximum
	Part	Peak	Forward	Radiant Flux	Radiant Flux	Radiant Flux
Color	Number	Wavelength	current	(mW)	(mW)	(mW)
Crimson	TMSB-BFP	650~670nm	150mA	70mW	100mW	
	TMSB-BFI	720~740nm	150mA	55mW	80mW	
IR	TMSB-BFI	835~870nm	150mA	40mW	60mW	
	TMSB-BFI	935~955nm	150mA	40mW	50mW	

Electrical Characteristics (Tj=25°℃)

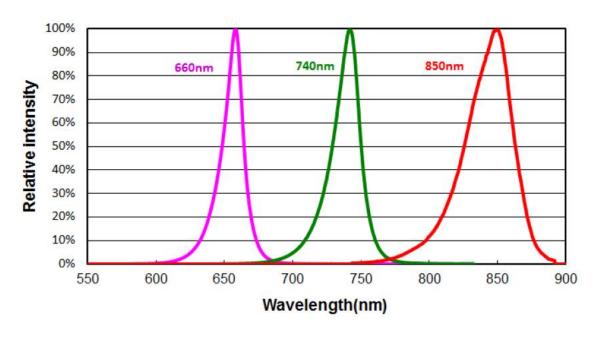
Forward Voltage V_F(V)

Color	Part Number	Peak Wavelength	Forward current	Min.	Тур.	Max.
Crimson	TMSB-BFP	650~670nm	150mA	1.8	2.2	
	TMSB-BFI	720~740nm	150mA	1.8	2.2	
IR	TMSB-BFI	835~870nm	150mA	1.5	1.8	
	TMSB-BFI	935~955nm	150mA	1.5	1.8	

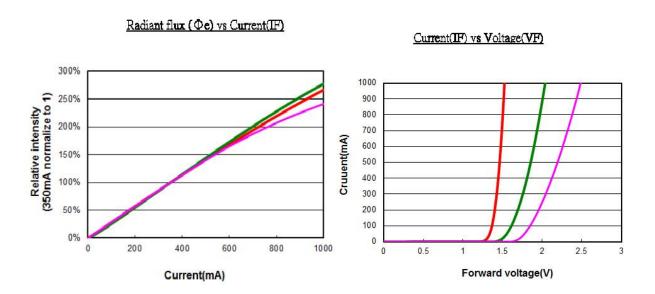
Notes:

1. $V_F \pm 0.1V$ tester tolerance.

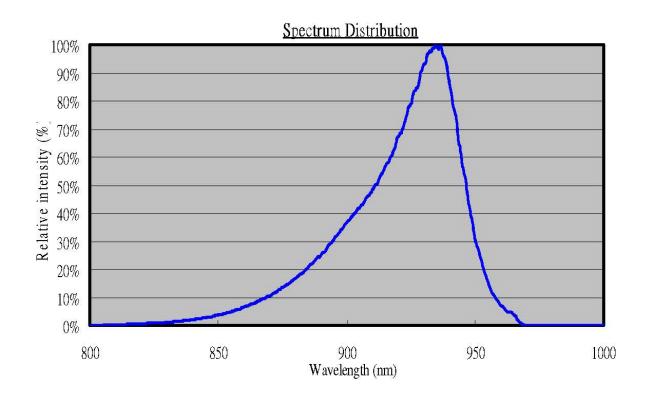
RELIABILITY ITEMS and SPECTIONS


No	Test Item	Test Conditions	Remark	
1	Room Temperature Operating Life	25 ℃	1000 hrs	
2	High Temperature Storage	Temperature : 110°C	1000 hrs	
3	Thermal shock	-40°C to 120°C, 20 min. dwell,	200	
3	Thermal Shock	<20 sec. transfer	cycles	
4	High Temperature , High Humidity Storage	85°C/85%RH	1000 hrs	
5	Low Temperature Storage	- 40℃	1000 hrs	
6	Solderability	Tp = 260°C for 5 sec	3 times	
7	Drop test	120 cm height, fall freely onto	3 times	
		stainless board		
8	Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell,	200	
		<5 min. transfer	cycles	

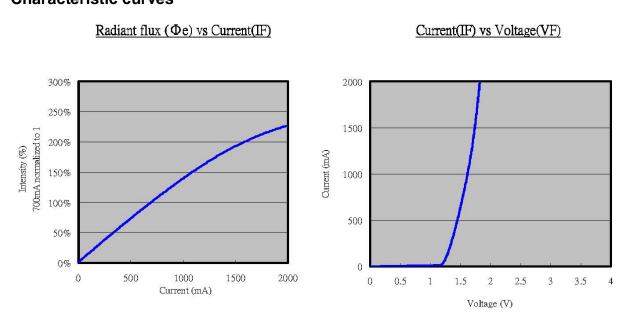
Failure Criteria:


- 1. Forward Voltage (VF) \geq Initial Level x 1.1
- 2. Luminous Flux or Radiometric Power (ΦV) \leq Initial Level x 0.7
- 3. Reverse Current (IR) \geq 10 μ A
- 4. Resistance to Soldering Heat: No deadd lamps or visual damage.

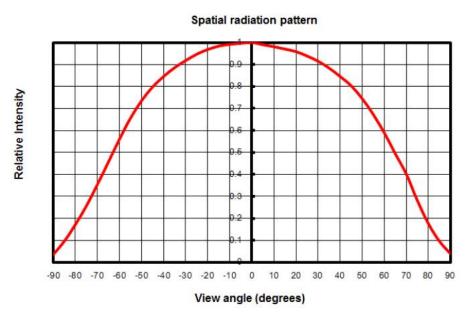
Wavelength Spectrum, Ta=25 ℃

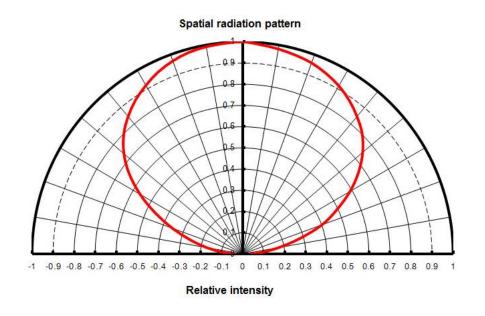


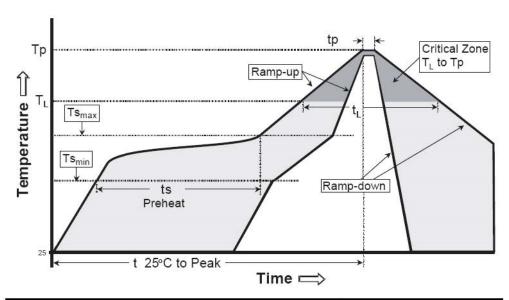
Characteristic curves



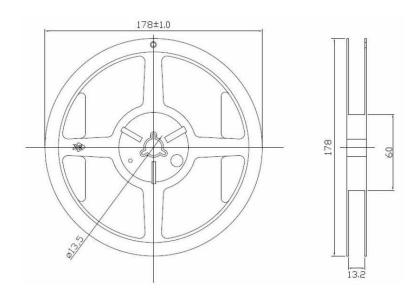
Wavelength Spectrum, Ta=25 ℃



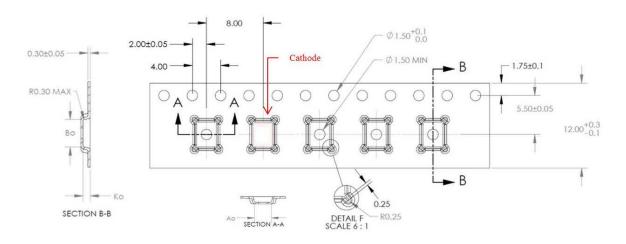

Characteristic curves


Typical Spatial Radiation Pattern

Recommended Soldering Profile



Profile Feature	Typical parameters
Average Ramp-Up Rate (Ts _{max} to Tp)	3 °C/second max.
Preheat Temperature Min (Tsmin)	150 ℃
Preheat Temperature Max (Ts _{max})	200 ℃
Time (Ts _{min} to Ts _{max})	60-180 seconds
Time maintained above Temperature (TL)	217 ℃
Time maintained above Time (TL)	60-150 seconds
Peak/Classification Temperature (Tp)	240 ℃
Time within 5 °C of Actual Peak Temperature (Tp)	5 seconds
Ramp-Down Rate	6 °C/second max.
Time 25 ℃ to Peak Temperature	8 minutes max.


- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When
 repairing is unavoidable, a double-head soldering iron should be used. It should
 be confirmed beforehand whether the characteristics of the LEDs will or will not
 be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Tape and Reel Packaging Specifications

Carrier tape dimensions

Notes:

1. All dimensions are in millimeters

Notice

- In order to avoid absorption of moisture, it is recommended that the products are stored in the dry box (or desiccators) with a desiccants. Alternatively the following environment is recommended: Storage temperature: 5°C~30°C Humidity:60% HR max.
- 2. If the storage conditions are of high humidity the product should be dried before use. Recommended drying conditions: 12 hours at 60°C±5°C.
- 3. Any mechanical force or any excess vibration should be avoid during the cooling process after soldering.
- 4. Reflow rapidly cooling should be avoided.
- 5. Components should not be mounted on distorted Printed Circuit Boards.
- 6. Devices should not contact with any types of fluid, such as water, oil, organic solvents.... etc.
- 7. The maximum ambient temperature should be taken into consideration when determining the operating current.
- 8. Devices should be soldered within 7 days after opening the moisture-proof packing.
- Repack unused product in anti-moisture packing, fold to close any opening and store in a dry place.
- 10. The appearance and specifications of devices may be modified for improvement without notice.
- 11. ESD Precautions Static Electricity and surge damages LEDs. It is recommended that wrist bands or anti-electrostatic gloves be used when handing the LEDs. All devices, equipment and machinery should be properly grounded.
- **12.** This product must be driven by constant power supplier.