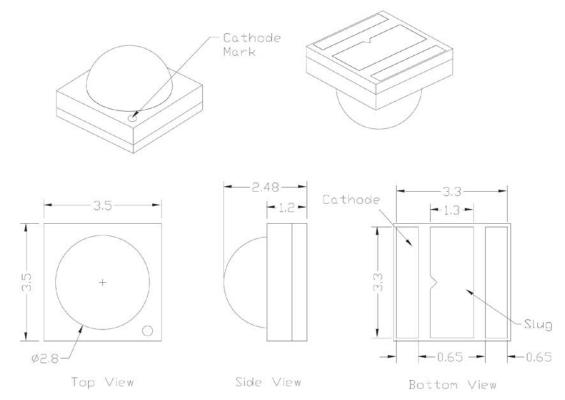


Power Light Source

Introduction:

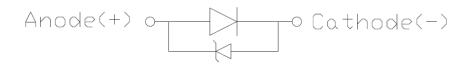
THCA-D6U-viewing angle 60° Quartz Package, is one of the smallest high power LED, has offered extended solid-state lighting design possibilities. Due to the special design of chip and package. THCA-D6U -viewing angle 60° is designed with using copper leadframe, the best thermal material of the world.

Feature:


- Long operating life
- Energy efficiency
- Compact design
- View angle 60°
- ROHS compatibility
- Quartz Glass Lens

Typical Applications:

- Currency inspection
- UV drying of printing inks and lacquers
- UV gluing, UV curing, UV marking
- Detects fluorescing minerals and gemsIntroduction


Package Dimensions:

Notes:

- 1. 1. All dimensions are in millimeters
- 2. 2. Tolerance is ± 0.25 mm

Circuit Diagram

Absolute Maximum Ratings

Parameter	Rating
DC Forward Current (mA)	1000
Peak Pulsed Forward Current (mA) 1100 (less than 1/10 duty cycle@1KHz)	1100
ESD Sensitivity (HBM per MIL-STD-883E Method 3015.7)	±4000V
LED Junction Temperature (°C)	120
Operating Temperature (°C)	-40~85
Storage Temperature (°C)	-40~100
Soldering Temperature	JEDEC 020c 260°C
Allowable Reflow Cycles	3
Reverse Voltage (V_R)	Not designed to be driven in reverse bias

Optical Characteristics@700mA (Tj=25°C)

Color	Peak Wavelength λp			Viewing Angle Degree
Coloi	Min.	Typical	Max.	2θ _{1/2}
UV	365nm	367.5nm	370nm	60
	380nm	385nm	390nm	60
	390nm	395nm	400nm	60
	400nm	405nm	410nm	60

Notes:

1. Peak wavelength is measured with an accuracy of ± 0.5 nm..

Flux Characteristics (Tj=25°C)

	Radiometric Power (mW)			
Peak Wavelength	@700mA		Refer@500mA	
	Min.	Тур.	Тур.	
365-370nm	1000mW	1080mW	770mW	
380-390nm	1210mW	1250mW	880mW	
390-400nm	1100mW	1180mW	845mW	
400-410nm	1210mW	1250mW	880mW	

- TCI maintains a tolerance of ±7% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics (Tj=25°C)

Peak		Forward \	Thermal Resistance		
Wavelength	@700mA			Refer @500mA	Junction to lead
vvavelengin	Min.	Typical	Max.	Typical	(°CW)
365-370nm	3.4	3.7	4.0	3.6	8
380-390nm	3.2	3.5	3.8	3.4	8
390-400nm	3.2	3.5	3.8	3.4	8
400-410nm	3.2	3.5	3.8	3.4	8

Notes:

1. $V_F \pm 0.1V$ tester tolerance.

RELIABILITY ITEMS and SPECTIONS

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, IF = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Operating Life (WHTOL)	85°C/60%RH, IF = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
LowTemperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3
Solder Heat Resistance (SHR)	260°C ± 5°C, 10 sec.		Note 3
Solderability	Steam age for 16 hrs., then solder dip at 260°C for 5 sec.		Solder coverage on lead

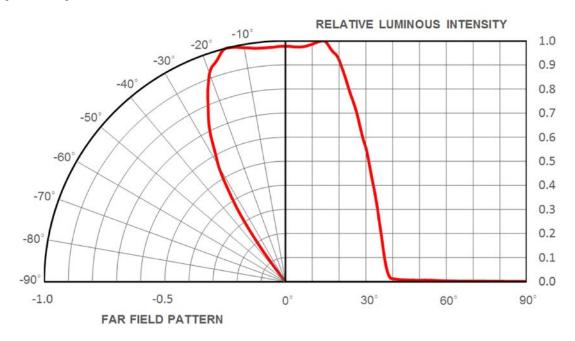
Notes:

1. Depending on the maximum derating curve.

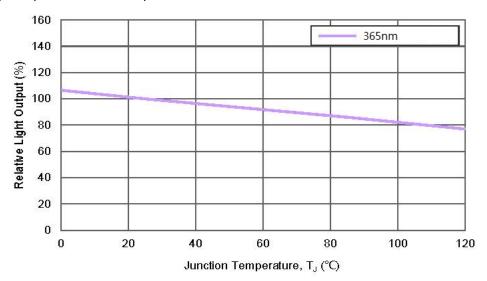
2. Criteria for judging failure

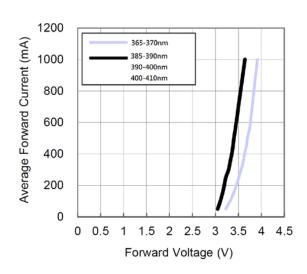
		Criteria for	Judgement
Item	Test Condition	Min.	Max.
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1
Luminous Flux or	I _F = max DC	Initial Level x 0.7	1
Reverse Current (I _R)	$V_R = 5V$		50 μΑ

^{*} The test is performed after the LED is cooled down to the room temperature.


3. A failure is an LED that is open or shorted.

Color Spectrum, TJ = 25°C


Typical Spatial Radiation Pattern


Light Output Characteristics

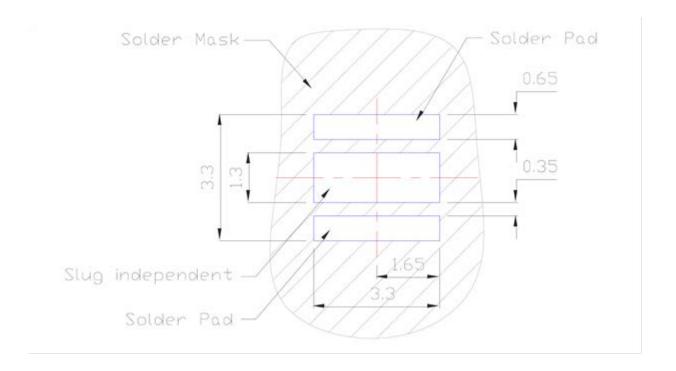
Relative Light Output vs. Junction Temperature at 350mA

Forward Current Characteristics, TJ = 25°C

Forward Voltage vs. Forward Current

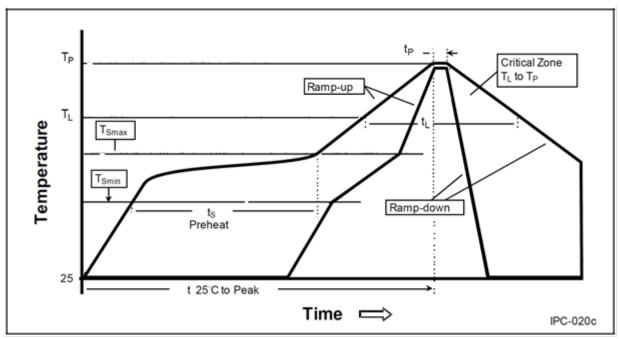
Forward Current vs. Luminous Flux

Moisture Sensitivity Level - JEDEC Level 1


Floor Life		Soak Requirements				
Level	FIOO	r Lite	Standard		Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA

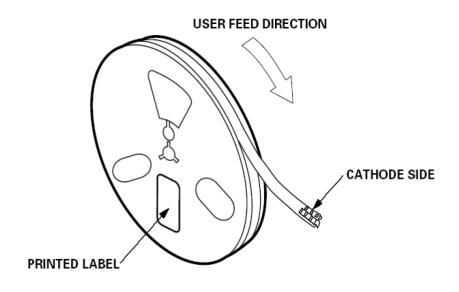
- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

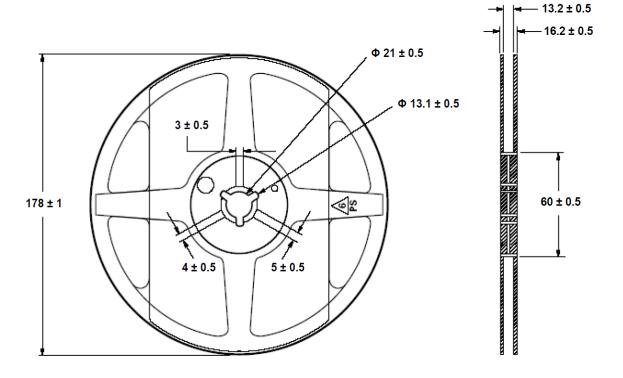
	Floor Life		Soak Requirements			
Level			Standard		Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH
4	72 hours	≤30°C / 60% RH	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH
5a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA


Recommended Solder Pad Design

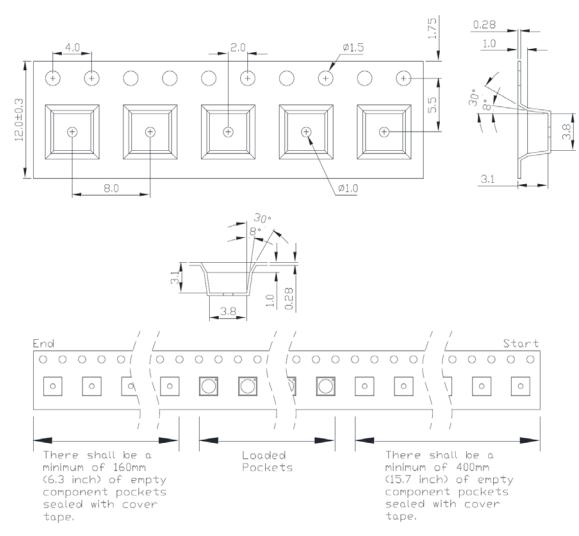
- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad

Reflow Soldering Temperature Profile




Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate	3°C / second max.	3°C / second max.
(T _{Smax} to T _P)	5 C/ Second Max.	5 C/ second max.
Preheat		
– Temperature Min (T _{Smin})	100°C	150°C
– Temperature Max (T _{Smax})	150°C	200°C
- Time (t _{Smin} to t _{Smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T _L)	183°C	217°C
– Time (t ₁)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (Tp)	240°C	260°C
Time Within 5°C of Actual Peak	10-30 seconds	20-40 seconds
Temperature (tp)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a
 double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of
 the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.


Tape and Reel Packaging Specifications

Carrier tape dimensions

Note

All dimensions are in millimeters

Notice

- 1. In order to avoid absorption of moisture, it is recommended that the products are stored in the dry box (or desiccators) with a desiccants. Alternatively the following environment is recommended: Storage temperature: 5°C~30°C Humidity:60% HR max.
- 2. If the storage conditions are of high humidity the product should be dried before use. Recommended drying conditions: 12 hours at 60°C±5°C.
- 3. Any mechanical force or any excess vibration should be avoid during the cooling process after soldering.
- 4. Reflow rapidly cooling should be avoided.
- 5. Components should not be mounted on distorted Printed Circuit Boards.
- 6. Devices should not contact with any types of fluid, such as water, oil, organic solvents.... etc.
- 7. The maximum ambient temperature should be taken into consideration when determining the operating current.
- 8. Devices should be soldered within 7 days after opening the moisture-proof packing.
- Repack unused product in anti-moisture packing, fold to close any opening and store in a dry place.
- 10. The appearance and specifications of devices may be modified for improvement without notice.
- 11. ESD Precautions Static Electricity and surge damages LEDs. It is recommended that wrist bands or anti-electrostatic gloves be used when handing the LEDs. All devices, equipment and machinery should be properly grounded.
- 12. This product must be driven by constant power supplier.

Eye Safety Guidelines

- During operation, the LED emits high intensity ultraviolet (UV) light, which is harmful to skin and eyes. UV light is hazardous to skin and may cause cancer. Avoid exposure to UV light when LED is operational.
 - Precautions must be taken to avoid looking directly at the UV light without the use of UV light protective
 - glasses. Do not look directly at the front of the LED or at the LED's lens when LED is operational.
- Attach warning labels on products/systems that use UV LEDs