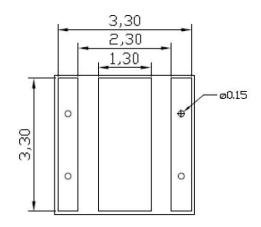


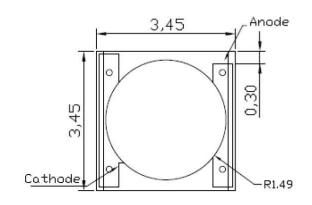
Power Light Source

Introduction:

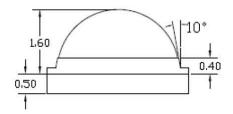
LED UV is one the highest flux LEDs in the world. Due to the special design of chip and package, the LED UV is designed by particular package for high power LED.

Feature:


- Long operating life
- Energy efficiency
- Compact design
- Superior ESD protection
- ROHS compatibility

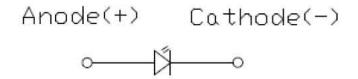

Typical Applications:

- Counterfeit currency
- Defect detection
- Medical treatment



Package Dimensions:

Bottom Layout



Dimension

Notes:

- 1. 1. All dimensions are in millimeters
- 2. 2. Tolerance is ±0.25mm

Circuit Diagram

Absolute Maximum Ratings

Parameter		Value
DC Forward Current (m A)	1W	350
DC Forward Current (mA)	3W	700
Peak Pulse Current (mA)	1W	400
(1/10 Duty Cycle at 1KHz)	3W	800
LED Junction Temperature (°C)		110
Operating Board Temperature (°C)		-30°℃ ~60°℃
Storage Temperature (°C)		-40°C ~100°C
Soldering Temperature		JEDEC 020c 240°ℂ.
Allowable Reflow Cycles		3
Reverse Voltage		Not design to be driven in reverse bias
ESD Sensitivity		> 2,000V Human Body Model (HBM)

Optical Characteristics (Tj=25°C)

Peak Wavelength λρ Color		avelength λp	Viewing Angle	Doom Dottorn	
Color	Min.	Max.	Degree($2\theta_{1/2}$)	Beam Pattern	
UV	395nm	410nm	125	Lambortion	
ΟV	380nm	390nm	125	 Lambertian 	

Notes:

^{1.} Peak wavelength is measured with an accuracy of ±0.5nm.

Flux Characteristics (Tj=25°C)

Peak Wavelength	Forward current	Minimum Radiant Flux (mW)	Typical Radiant Flux (mW)	Maximum Radiant Flux (mW)
20E 440nm	350mA	550mW	700mW	
395~410nm	700mA	1100mW	1300mW	
380~390nm	350mA	650mW	800mW	
300~390nm	700mA	1200mW	1400mW	

- TCI maintains a tolerance of ±7% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics (Tj=25°C)

		Forward Voltage $V_F(V)$			Thermal Resistance Junction to lead ($^{\circ}$ C
Peak	Forward				W)
Wavelength	current	Min.	Тур.	Max.	,
395~410nm -	350mA	2.9	3.3	3.8	8
	700mA	3.0	3.5	4.0	8
380~390nm -	350mA	2.9	3.3	3.8	8
300~390IIII	700mA	3.0	3.5	4.0	8

Notes:

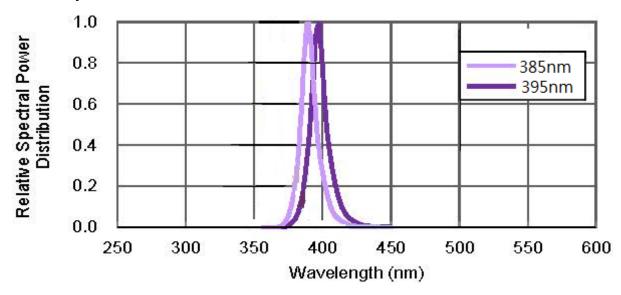
1. $V_F \pm 0.1V$ tester tolerance.

RELIABILITY ITEMS and SPECTIONS

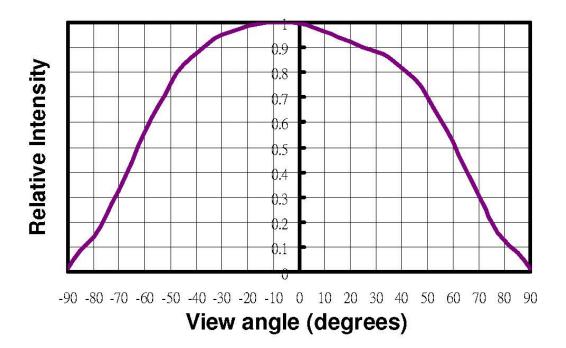
Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Operating Life (WHTOL)	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3
Solder Heat Resistance (SHR)	260°C ± 5°C, 10 sec.		Note 3
Solderability	Steam age for 16 hrs., then solder dip at 260°C for 5 sec.		Solder coverage on lead

Notes:

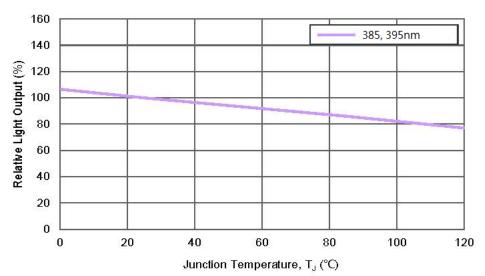
- 1. Depending on the maximum derating curve.
- 2. Criteria for judging failure


		Criteria for	Judgement
Item	Test Condition	Min.	Max.
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1
Luminous Flux or	I _F = max DC	Initial Level x 0.7	
Reverse Current (I _R)	$V_R = 5V$		50 μΑ

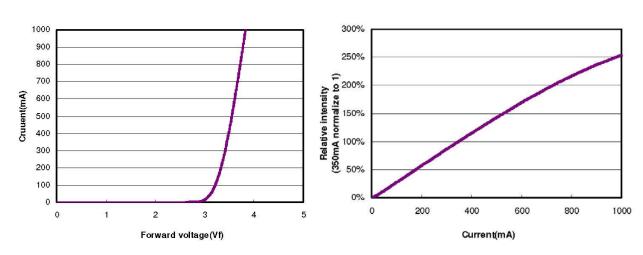
^{*} The test is performed after the LED is cooled down to the room temperature.


3. A failure is an LED that is open or shorted.

Color Spectrum, TJ = 25°C


Typical Spatial Radiation Pattern

Light Output Characteristics

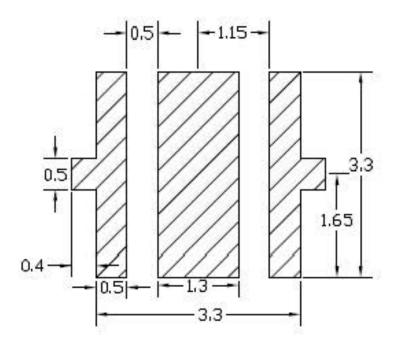

Relative Light Output vs. Junction Temperature at 350mA

Forward Current Characteristics, TJ = 25°C

Forward Voltage vs. Forward Current

Forward Current vs. Luminous Flux

Moisture Sensitivity Level - JEDEC Level 1


	Floor Life		Soak Requirements			
Level	FIOO			Standard		d Environment
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA

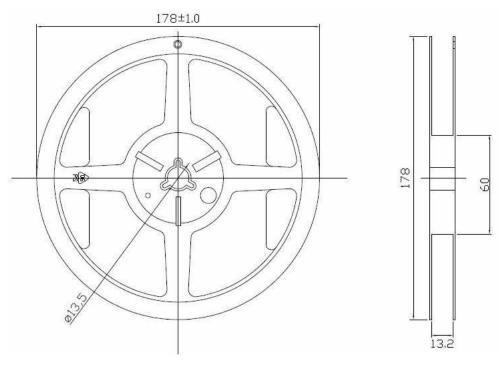
- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

	Floor Life		Soak Requirements			
Level		Life	Standard		Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH
4	72 hours	≤30°C / 60% RH	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH
5a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA

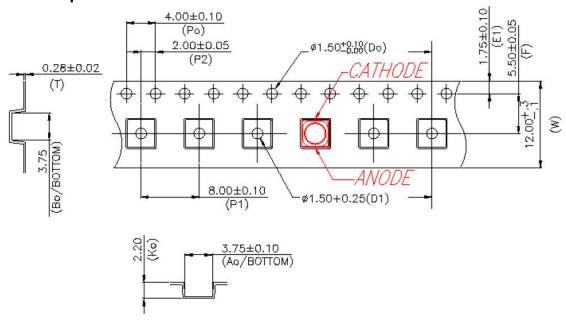
Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad

Reflow Soldering Temperature Profile



Profile Feature	Typical parameters
Average Ramp-Up Rate (Tsmax to Tp)	3 °C/second max.
Preheat Temperature Min (Tsmin)	150 °C
Preheat Temperature Max (Tsmax)	200 °C
Time (Tsmin to Tsmax)	60-180 seconds
Time maintained above Temperature (TL)	217 °C
Time maintained above Time (TL)	60-150 seconds
Peak/Classification Temperature (Tp)	230 -240 °C
Time within 5 °C of Actual Peak Temperature (Tp)	5 seconds
Ramp-Down Rate	6 °C/second max.
Time 25 °C to Peak Temperature	8 minutes max.


- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a
 double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of
 the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Tape and Reel Packaging Specifications

Carrier tape dimensions

Note

All dimensions are in millimeters

Notice

- 1. In order to avoid absorption of moisture, it is recommended that the products are stored in the dry box (or desiccators) with a desiccants. Alternatively the following environment is recommended: Storage temperature: 5°C~30°C Humidity:60% HR max.
- 2. If the storage conditions are of high humidity the product should be dried before use. Recommended drying conditions: 12 hours at 60°C±5°C.
- Any mechanical force or any excess vibration should be avoid during the cooling process after soldering.
- 4. Reflow rapidly cooling should be avoided.
- 5. Components should not be mounted on distorted Printed Circuit Boards.
- 6. Devices should not contact with any types of fluid, such as water, oil, organic solvents.... etc.
- 7. The maximum ambient temperature should be taken into consideration when determining the operating current.
- 8. Devices should be soldered within 7 days after opening the moisture-proof packing.
- 9. Repack unused product in anti-moisture packing, fold to close any opening and store in a dry place.
- 10. The appearance and specifications of devices may be modified for improvement without notice.
- 11. ESD Precautions Static Electricity and surge damages LEDs. It is recommended that wrist bands or anti-electrostatic gloves be used when handing the LEDs. All devices, equipment and machinery should be properly grounded.
- **12.** This product must be driven by constant power supplier.

