

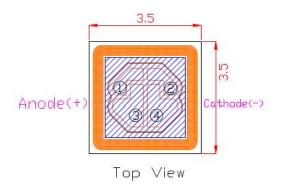
台宙晶體科技股份有限公司 Top Crystal Technology Inc.,

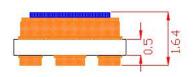
Power Light Source

Introduction :

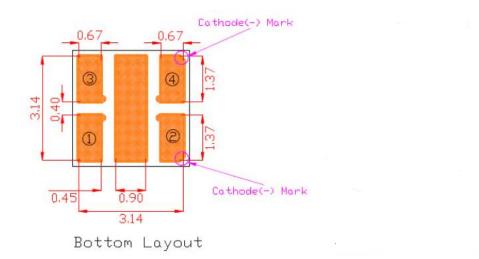
THCB-ALV is one the highest flux LEDs in the world. Due to the special design of chip and package, the THCB-ALV is designed by particular package for high power LED

Feature :

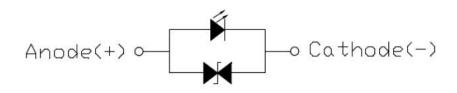

- Long operating life
- Energy efficiency
- Compact design
- Superior ESD protection
- ROHS compatibility


Typical Applications:

- Counterfeit currency
- Defect detection
- Medical treatment



Package Dimensions:



Notes :

- 1. 1. All dimensions are in millimeters
- 2. 2. Tolerance is ± 0.25 mm

CirCuit Diagram

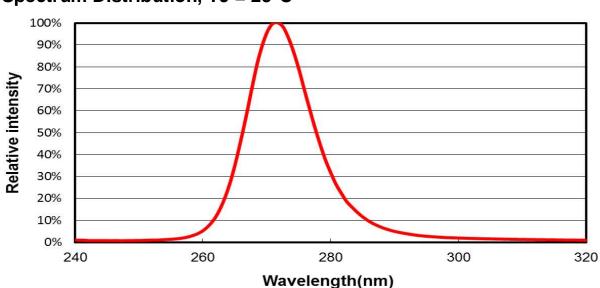
Absolute Maximum Ratings

Parameter	Value
DC Forward Current (mA)	100
Peak Pulse Current (mA) (less than 1/10 duty cycle@1KHz)	120
LED Junction Temperature ($^{\circ}$ C)	100
Operating Board Temperature ($^\circ\!\!\mathbb{C}$)	-30° C ~60° C
Storage Temperature (°C)	-40° C ~100° C
Soldering Temperature	JEDEC 020c 240°C.
Allowable Reflow Cycles	3
Reverse Voltage	Not design to be driven in reverse bias
ESD Sensitivity	> 2,000V Human Body Model (HBM)

Electrical/Optical Characteristics@100mA, Junction Temperature Tj=25°C					
Parameter	Units	Min.	Avg.	Max	
Radiant Flux (nW)	mW		10	16	
Dominate Wavelength (λ P)	nm	265		285	
Forward Voltage (VF)	V	5	7	10	
Viewing Angle[2] (201/2)	degrees		120		

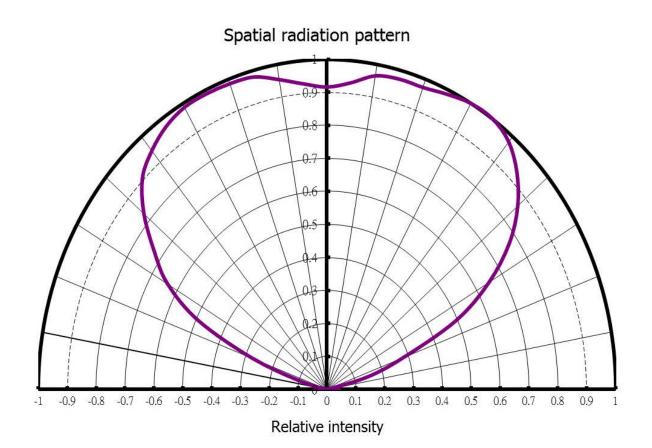
3

台宙晶體科技股份有限公司 Top Crystal Technology Inc.,

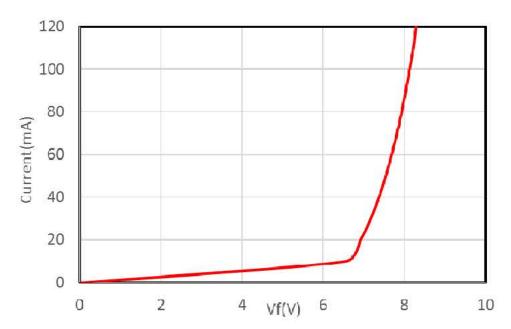

RELIABILITY ITEMS and SPECTIONS

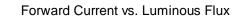
No	Test Item	Test Conditions	Remark
1	Room Temperature Operating Life	25 ℃	1000 hrs
2	High Temperature Storage	Temperature : 110° C	1000 hrs
3	Thermal shock	-40°C to 120°C, 20 min. dwell, <20 sec. transfer	200 cycles
4	High Temperature [,] High Humidity Storage	85°C/85%RH	1000 hrs
5	Low Temperature Storage	- 40°C	1000 hrs
6	Solderability	Tp = 260°C for 5 sec	3 times
7	Drop test	120 cm height , fall freely onto stainless board	3 times
8	Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles

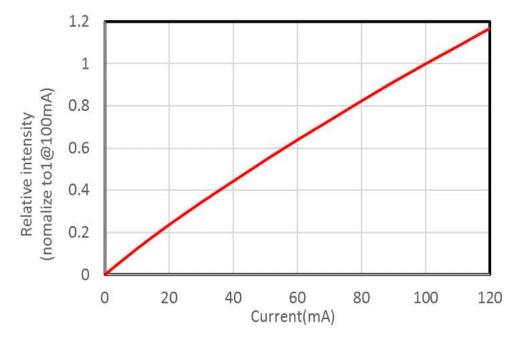
Failure Criteria :


- 1. Forward Voltage (VF) \geq Initial Level x 1.1
- 2. Luminous Flux or Radiometric Power (Φ V) \leq Initial Level x 0.7
- 3. Reverse Current (IR) \geq 10µA
- 4. Resistance to Soldering Heat : No deaqd lamps or visual damage.

Spectrum Distribution, TJ = 25°C

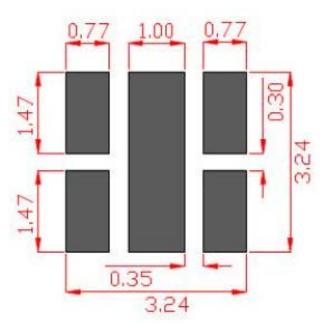

Typical Spatial Radiation Pattern

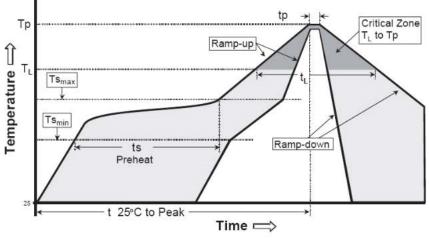




Forward Current Characteristics, TJ = 25°C

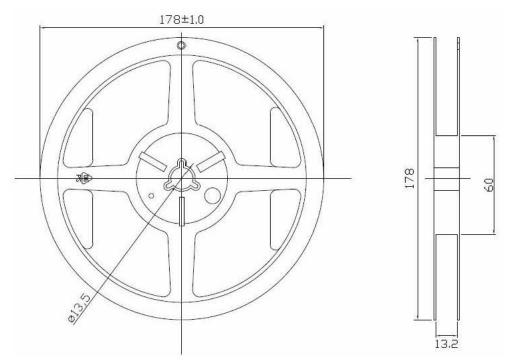
Forward Voltage vs. Forward Current



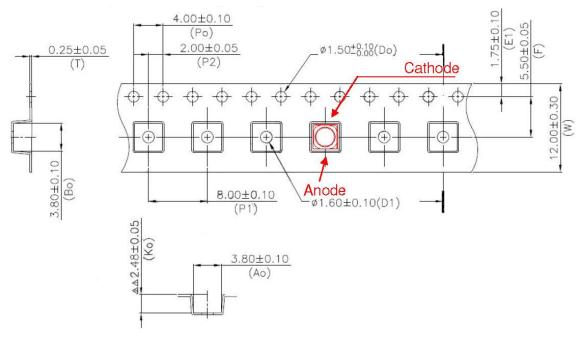

Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad

Reflow Soldering Temperature Profile



Profile Feature	Typical parameters	
Average Ramp-Up Rate (Ts _{max} to Tp)	3 °C/second max.	
Preheat Temperature Min (Ts _{min})	100 °C	
Preheat Temperature Max (Ts _{max})	150 °C	
Time (Ts _{min} to Ts _{max})	60-120 seconds	
Time maintained above Temperature (TL)	180 °C	
Time maintained above Time (TL)	60-150 seconds	
Peak/Classification Temperature (Tp)	200 °C	
Time within 5 °C of Actual Peak Temperature (Tp)	5 seconds	
Ramp-Down Rate	6 °C/second max.	
Time 25 °C to Peak Temperature	6 minutes max.	


- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Tape and Reel Packaging Specifications

Carrier tape dimensions

Note

All dimensions are in millimeters

Notice

- In order to avoid absorption of moisture, it is recommended that the products are stored in the dry box (or desiccators) with a desiccants. Alternatively the following environment is recommended: Storage temperature : 5°C~30°C Humidity:60% HR max.
- If the storage conditions are of high humidity the product should be dried before use. Recommended drying conditions: 12 hours at 60°C±5°C.
- 3. Any mechanical force or any excess vibration should be avoid during the cooling process after soldering.
- 4. Reflow rapidly cooling should be avoided.
- 5. Components should not be mounted on distorted Printed Circuit Boards.
- Devices should not contact with any types of fluid, such as water , oil , organic solvents.... etc.
- 7. The maximum ambient temperature should be taken into consideration when determining the operating current.
- 8. Devices should be soldered within 7 days after opening the moisture-proof packing.
- 9. Repack unused product in anti-moisture packing, fold to close any opening and store in a dry place.
- 10. The appearance and specifications of devices may be modified for improvement without notice.
- 11. ESD Precautions Static Electricity and surge damages LEDs. It is recommended that wrist bands or anti-electrostatic gloves be used when handing the LEDs. All devices, equipment and machinery should be properly grounded.
- 12. This product must be driven by constant power supplier.

